Data-Driven Sub-Riemannian Geodesics in SE(2)
نویسندگان
چکیده
We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2) = R o S with a metric tensor depending on a smooth external cost C : SE(2) → [δ, 1], δ > 0, computed from image data. The method consists of a first step where geodesically equidistant surfaces are computed as a viscosity solution of a HamiltonJacobi-Bellman (HJB) system derived via Pontryagin’s Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. We show that our method produces geodesically equidistant surfaces. For C = 1 we show that our method produces the global minimizers, and comparison with exact solutions shows a remarkable accuracy of the SR-spheres/geodesics. Finally, trackings in synthetic and retinal images show the potential of including the SR-geometry.
منابع مشابه
Cuspless Sub-Riemannian Geodesics within the Euclidean Motion Group SE(d)
We consider the problem Pcurve of minimizing ∫ ` 0 √ β 2 + |κ(s)|2ds for a planar curve having fixed initial and final positions and directions. Here κ is the curvature of the curve with free total length `. This problem comes from a 2D model of geometry of vision due to Petitot, Citti and Sarti. Here we will provide a general theory on cuspless sub-Riemannian geodesics within a sub-Riemannian ...
متن کاملA PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2)
We present a new flexible wavefront propagation algorithm for the boundary value problem for subRiemannian (SR) geodesics in the roto-translation group SE(2) = R S with a metric tensor depending on a smooth external cost C : SE(2) → [δ, 1], δ > 0, computed from image data. The method consists of a first step where an SR-distance map is computed as a viscosity solution of a Hamilton–Jacobi–Bellm...
متن کاملSub-Riemannian Fast Marching in SE(2)
We propose a Fast Marching based implementation for computing sub-Riemanninan (SR) geodesics in the roto-translation group SE(2), with a metric depending on a cost induced by the image data. The key ingredient is a Riemannian approximation of the SR-metric. Then, a state of the art Fast Marching solver that is able to deal with extreme anisotropies is used to compute a SR-distance map as the so...
متن کاملMaxwell Strata in Sub-riemannian Problem on the Group of Motions of a Plane
The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi’s functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained. Mathematics Subject Classification. 49J15,...
متن کاملSub-Riemannian geodesics on the 3-D sphere
The unit sphere S can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra define a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving...
متن کامل